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Abstract

Video is the dominant medium through which we consume information. Due to the sheer

volume of video content, it is of great interest in the research community to develop au-

tomated ways to make this content manageable. In video highlight detection, our goal is

to automatically find interesting moments in videos. This makes it much easier to browse,

search, categorize, and edit large amounts of video data. In this thesis, we develop two new

state-of-the-art methods for video highlight detection. We first explore the use of audio

for highlight detection. This is largely unexplored territory despite audio providing useful

cues for finding interesting moments. Then we develop a new unsupervised method that

alleviates the need for manual annotations that tell us exactly which parts of a video are in-

teresting. Although our main focus is on video highlight detection, our models are general

and we believe that they are applicable to other tasks such as action recognition, and video

classification.
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Preface

This thesis is an original work by Taivanbat Badamdorj. The work in Chapter 3 has previ-

ously appeared in the following publication by the author:

• T. Badamdorj, M. Rochan, Y. Wang, and L. Cheng, “Joint visual and audio learning

for video highlight detection,” in Proceedings of the IEEE/CVF International Con-
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Chapter 1

Introduction

We have witnessed an explosion of online video content in recent years due to the rapid

adoption of video based social networks like YouTube, Instagram, and TikTok. This has

led to increasing demands for video highlight detection, which aims to automatically detect

interesting moments (called “highlights”) within a video. Highlight detection is important

due to its broad range of downstream applications including video summarization, recom-

mendation, editing, and browsing. In consequence, there has been significant progress in

the field in recent years [1–11].

In video highlight detection, we divide a video into clips of some fixed length, and output

a score for each clip that indicates the likelihood that it is a highlight. It is fundamentally

a ranking problem where we want to output scores such that highlight clips have a higher

score than non-highlight clips for the video.

Video highlight detection has a broad range of applications. For example, we can imag-

ine that on video sharing websites such as YouTube, we can improve video browsing by

detecting interesting parts of long videos so that users can save time and skip ahead. An-

other example is video surveillance since it is a time consuming process for humans to sift

through security footage. An automated method that finds the moments of interest in the

security footage may save hours of time. It may also be useful in video editing. For exam-

ple, generating a trailer from a full length movie is a long process that may be sped up by a

highlight detection method that finds the most interesting moments within the movie, and
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generates a first draft for a trailer. A user could then edit the draft according to their taste

[11].

We can also use the detected highlights to generate a short summary of the video. Al-

though closely related to video highlight detection, the video summarization task has a

slightly different aim. In video summarization, the task is to output a set of segments that

will represent the entire video, rather than just a score for every clip in the video. It aims

to distill the video into a shorter version of itself that still retains the original meaning of

the video. Thus for the video summarization task, we may also want to take into account

factors such as redundancy (we do not want two clips that are similar to both be a part of

the summary), and representativeness (we want to select clips that represent the main idea).

Besides saving time for the user, it also saves time for other video based applications such

as video recommendation and action recognition. Fundamentally, we remove the mean-

ingless parts of the video, thus providing a “cleaner” signal for downstream video-based

applications.

Despite recent progress, there are still several areas in which video highlight detection is

lacking. Firstly, the vast majority of existing approaches do not take into account the effect

of audio. Video is a multi-modal medium, so it makes sense that interesting moments

also depend on the audio. We want to be able to find what is interesting by hearing and

by seeing, as these two modalities often work together to determine what is interesting

to us. Secondly, most existing approaches depend on manually annotated training data.

This means that for every video, a human annotator must first watch the entire video, then

manually tag the interesting clips. As one can imagine, this is a very time-consuming and

expensive process. Thus, we are interested in developing an unsupervised method that does

away with manual supervision altogether.
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1.1 Thesis Contributions

In this thesis, we develop two methods for video highlight detection. We make the follow-

ing contributions:

• We propose a new audio-visual highlight detection model in Chapter 3. Unlike prior

methods that only use visual features, we develop a multi-modal framework that

captures the interaction between the audio and visual features. In this chapter, we

also present a simple formulation that allows us to deal with the case where the

audio or visual features are noisy. We achieve state-of-the-art results on the highlight

detection task.

• We present a novel unsupervised video highlight detection framework in Chapter 4

that learns to pick highlight clips in order to perform video clustering through con-

trastive learning. Unlike prior weakly-supervised and unsupervised methods, we do

not collect a large external dataset. We outperform prior works in weakly-supervised

and unsupervised methods in video highlight detection.

1.2 Thesis Outline

In Chapter 2, we discuss related work. In Chapter 3, we present a novel method for detect-

ing highlights that jointly uses audio and video. In Chapter 4, we present our unsupervised

highlight detection framework. In Chapter 5 we conclude this thesis and discuss possible

future avenues of research.
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Chapter 2

Related Work

In this chapter, we review some related works on highlight detection as well as tasks related

to highlight detection. Then we review work from other tasks that inspire some of our

methods.

2.1 Video Highlight Detection

2.1.1 Background

The goal of video highlight detection is to find interesting moments in videos. In Fig. 2.1,

we show an example where the highlight moments are outlined in green. In this parkour

video, we want to find the parts of the video where people are actually doing parkour,

instead of just uninteresting background parts where there is nothing of interest happening.

In practice, existing works in highlight detection split a video into clips of a fixed size

(e.g.100 frames), obtain vector features for the frames within the clip using a pre-trained

neural network such as a C3D action recognition model [12], and take the average of the

vector features within the clip. For each clip, we thus obtain a single vector representation.

Then our goal is to output a scalar value called a highlight score for the clips in the video

such that highlight clips have a higher score than non-highlight clips.
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Figure 2.1: Example of highlight detection problem. In this parkour video, we want to find
the parts where people are doing parkour.

2.1.2 Prior efforts

Early efforts in video highlight detection mainly deal with sports videos [13–15]. Later

works were proposed to deal with videos from social media [1], as well as first-person

videos [16].

Some works formulate highlight detection as a classification problem [9], while it is

also popular to formulate highlight detection as a ranking problem [1, 2, 5–7, 11], where a

ranking network is trained to rank highlight clips higher than non-highlight clips.

Recently, weakly-supervised and unsupervised highlight detection methods have been

proposed [8, 10, 17–21], where the training label is only available at the entire video level.

The work of [8] takes advantage of the fact that clips from shorter videos are more likely to

be highlights to train a ranking network. MN [10], on the other hand, proposes a multiple

instance ranking framework that learns to rank clips from a given category higher than clips

from other categories.

MN [10] is the only other work that proposes an audio-visual framework. Their network

operates independently for each clip, and uses a variant of simple concatenation to produce

a fused audio-visual feature. In contrast, our model in Chapter 3 can utilize the context

within the entire video through the self-attention and bimodal attention layers. In addition,

while their work assumes that audio is useful only as a complementary feature to the visual

features, we make no such assumption, and allow each modality to modulate the other.

Many weakly supervised methods also rely on the collection of large datasets to train

their models [8, 10, 17], in contrast to our unsupervised highlight detection method in

Chapter 4. We compare our method to prior works in Chapter 4.
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2.2 Video Summarization

Video summarization is a closely related task aimed at producing a compact and cohe-

sive summary of a given video. Early works in video summarization are predominantly

unsupervised [19, 20, 22–30], and as such, many rely on heuristics such as diversity and

representativeness to obtain a summary video.

Weakly supervised methods [17, 21–23, 27, 31, 32] have also been developed to uti-

lize video-level information. Benefiting from the massive user tagging of online videos,

research efforts in supervised learning [28, 33–39] are also progressing rapidly.

Our work is influenced by the attention-based model of [39] that operates on sequences

of clips as potential highlights.

2.3 Multi-modal Learning

Recent progress has been made in multi-modal learning in various fields such as action

recognition [40], and speech recognition [41, 42]. It has been observed [43] that simple

fusion strategies often fail. We also observe in our experiments in Chapter 3 that late and

early fusion strategies are suboptimal, and propose the use of a bimodal attention layer

which captures the interaction between modalities.

Our work is also related to audio-visual speech recognition [41, 42]. The work of [41]

uses an attention network but does not model the interplay between audio and visual chan-

nels, instead the output of the previous decoding layer is used as the query for both modal-

ities. The work of [42] considers a one-way relation where the audio can be used to query

the visual features, but not vice-versa. In contrast, our model in Chapter 3 is symmetric,

and allows the visual features to query the audio features.
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2.4 Visual Sentinel

The visual sentinel is a concept introduced in image caption generation by [44]. The task

of image caption generation is to generate a textual description for a given image. The key

idea is that caption generation models do not always need to attend to the image; words

such as“and”,“of”, and “from” have no visual counterpart.

Therefore, the visual sentinel [44] is proposed as a “look-away” mechanism. When gen-

erating words without visual grounding, their model learns to attend to the visual sentinel

instead of the image.

This inspires us to formulate a noise sentinel in our context to automatically “look away”

from a modality if it is noisy. As we shall see in the experiments in Chapter 3, this greatly

improves the empirical performance of our approach.

2.5 Contrastive Learning

The idea of contrastive learning is to make representations of a sample agree under small

transformations [45]. In the case of images, we can transform an image by applying aug-

mentations such as random cropping, random jittering, or random flips. Then we train a

network to output a representation that is similar to the same image with a different set of

transformations applied to it. In essence, we learn to form a cluster for each sample where

each member is a transformed version of the sample. A neural network trained on such

a task would then output a representation of an image that is useful for downstream tasks

such as image classification.

In other words, we aim to learn effective representations by learning to pull semantically

close neighbors and pushing apart non-neighbors [46]. While the transformations to be

applied are clear in the case of images, it is unclear exactly how to apply transformations

to discrete modalities such as text. Recent work has suggested using dropout [47] within

the model as a form of data augmentation [48]: we can get different representations for
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the same input by using different random dropout masks. The final task would then be

the same as the case for images: pull the two representations of the same sample together,

while pushing the representation farther away from the representations of other samples in

the training dataset.

We use this idea in Chapter 4 for unsupervised video highlight detection. Our video

encoder picks the most important clips that help us to differentiate between embeddings of

different videos.
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Chapter 3

Audio-visual Learning for Video
Highlight Detection

In this chapter, we explore the use of audio in video highlight detection. Although the audio

component of the video provides important cues for highlight detection, the majority of

existing efforts focus almost exclusively on the visual component. In this chapter, we argue

that both audio and visual components of a video should be modeled jointly to retrieve its

best moments.

Let’s take a look at an example: Fig. 3.1, shows a video of a car crashing during a

race. We may identify the interesting part of the video by seeing the crash. On the other

hand, hearing people stop cheering and start talking could also be an indicator that the

moment is interesting. While we can process the visual and audio information separately,

our insight is that they also interact with each other. We can imagine that if we were in

the crowd depicted in Fig. 3.1, we would look to see what had happened if everybody

suddenly stopped cheering. It can also work the other way around: what we hear can

reinforce our beliefs that the given moment is interesting. These observations motivate

us to propose an approach that jointly learns from visual and audio information to detect

highlights in videos. It consists of two different attention mechanisms: a unimodal self-

attention mechanism that models the relationships between moments belonging to the same

modality; and a bimodal attention mechanism that models the interaction between the two

modalities.
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Figure 3.1: Audio-visual highlight detection: audio can be informative about which part
of the video is a highlight. In this video, a car crashes during a race in front of a large
crowd. The highlight (in green) is the crash, and we also show the top three audio class
probabilities from a pre-trained audio classification network [49]. The class probabilities
(speech, cheering, and crowd) show that the cheering and crowd noise dies out during
the crash, while talking increases. Intuitively, we understand that if people stop cheering
suddenly, something must have happened. In this work, we learn to utilize such audio cues.

Furthermore, we impart the ability to ignore a modality on our model. Intuitively, if we

hear something interesting, but do not see anything interesting when we look, we would

like to be able to ignore what we hear. In addition, if we do not hear anything of interest, it

is also not worth looking. Inspired by the visual sentinel [44], we introduce a noise sentinel

in the bimodal attention mechanism that allows our model to “look-away” from a modality

by attending to the noise sentinel instead.

The proposed attention mechanisms and the noise sentinel are novel and effective as

empirically indicated in the ablation studies. We demonstrate our model’s superior perfor-

mance on three well-known benchmarks, where our approach significantly outperforms the

state-of-the-art methods.
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Figure 3.2: An overview of our framework. An input video is evenly split into clips of
a fixed length, producing N total clips. The visual and audio modalities of the i-th clip
are then represented as vectors, vi and ai, respectively. For each modality, the relationship
between clips are tackled separately in the self-attention layer; this leads to the self-attended
features vv

i for visual, and aa
i for audio. It is then fed into the bimodal attention layers to

model the cross-modality relationships, and produce the bimodally attended features va
i

(audio attended visual features) and av
i (visually attended audio features). A more detailed

inspection of the bimodal attention layer is shown in Fig. 3.3. Finally, the self-attended and
bimodally attended features come together with a learned weighted sum, to produce the
feature zi, which is processed to output the final clip highlight score si for the i-th clip.

3.1 Our Approach

We show the overall architecture of our framework in Fig. 3.2. We first split a video V into

clips of a fixed length (e.g.100 frames), resulting in N clips. We characterize the i-th clip by

two vectors, vi for the visual features, and ai for the audio features, where i ∈ 1, 2, ..., N .

These visual and audio features are extracted using pre-trained visual [12, 50] and audio

feature extractors [49]. Moreover, as explained in Fig. 4.5, we capture the interactions

between clips using two different attention mechanisms, namely self-attention and bimodal

attention. For each modality, the self-attention layer captures interactions among clips of

the same modality. The output of both modalities are then fed to the two input branches of

the bimodal attention layers which capture the interplay between the audio and visual clips.

These attended features are subsequently fused and fed to a classifier which produces a

highlight score si for the i-th clip, which indicates the likelihood that the clip is a highlight.
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3.1.1 Unimodal Self-Attention

A given clip by itself is often inadequate to determine whether it is a highlight; rather it is

beneficial to consider the relationship of this clip with other clips in the video. The self-

attention mechanism [51] and its variants have been shown to be effective in modeling such

dependencies. Our self-attention mechanism is an adaptation of the disentangled attention

block [52] to our context. Without loss of generality, we describe in what follows our

self-attention mechanism for the visual features, {vi}Ni=1.

Let us denote the visual self-attention relationship with v → v (we attend from visual

to visual features). We denote by Wq,v→v, Wk,v→v, and Wm,v→v linear projection matrices,

and define the following quantities:

qv→v(vi) = q̂v→v(vi)−
1

N

N∑︂
l=1

q̂v→v(vl), (3.1)

kv→v(vj) = k̂v→v(vj)−
1

N

N∑︂
l=1

k̂v→v(vl), (3.2)

Here qv→v(vi) and kv→v(vj) are called the query and the key in self-attention. q̂v→v(vi)

and k̂v→v(vj) represent linear projections. We subtract the mean of these linear projections

from each quantity in Eq. (3.1) and Eq. (3.2).

q̂v→v(vi) = Wq,v→vvi, (3.3)

k̂v→v(vj) = Wk,v→vvj. (3.4)

We also define the term mj , which is a linear projection of each key into a scalar real.

mj is called the unary term.

mj = Wm,v→vvj. (3.5)

Now, the visual self-attention score ωv→v(vi,vj) between two clips vi and vj is defined

12



by

ωv→v(vi,vj) =softmax(c qv→v(vi)
⊺kv→v(vj)) + softmax(mj), (3.6)

where the softmax is over the key indices j (over the attended sequence). Following [51],

the constant c is used to normalize the dot product and to improve gradient flow through

the softmax operator.

Intuitively, the attention score ωv→v(vi,vj) captures the amount of dependency of

vi on vj relative to other clips in the video. As suggested by [52], the pairwise term

qv→v(vi)
⊺kv→v(vj) captures the relationship between clips, while the unary term mj rep-

resents the saliency of every clip within the video. This allows our module to learn a

representation that takes into account the relationship between clips as well as the overall

importance of each clip in the entire video.

We define the linear projection matrix, Wg,v→v. The attended features are then produced

by applying attention scores to re-weight the input features,

gv→v(vj) = Wg,v→vvj, (3.7)

vv
i =

N∑︂
j=1

ωv→v(vi,vj)gv→v(vj) + vi, (3.8)

where gv→v(vj) is called the value embedding of vj . The attended feature vector vv
i is

the combination of the original feature vi and the sum of other clip features weighted by

their corresponding attention scores. Here we adopt the convention of using superscript to

denote the modality that is used as a query. For example, vv
i refers to the visually-attended

visual features of the i-th clip.

The self-attended features of the audio modality (a→ a) can be similarly defined as:

aa
i =

N∑︂
j=1

ωa→a(ai,aj)ga→a(aj) + ai. (3.9)
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Figure 3.3: Detailed illustration of the bimodal attention layer. It aims to capture the rela-
tionship between the audio and visual modalities. The figure showcases attending to audio
using visual features (v → a). The noise sentinel is a part of the bimodal attention layer,
formed by concatenating along the time axis to the modality attended to. The bimodal
attention is then computed according to Eq.(3.19).

3.1.2 Bimodal Attention

The self-attention only captures the clip interactions within one modality. To capture the in-

teractions across modalities, we extend the self-attention mechanism and devise a bimodal

attention, shown in Fig. 3.3. In our bimodal attention, we compute the query from one

modality, and the key and value from the other modality. This is presented in the following

case of using visual features to attend to the audio, i.e. v → a, as:

av
i =

N∑︂
j=1

ωv→a(vi,aj)gv→a(aj) + aa
i . (3.10)

Here ωv→a(vi,aj) and gv→a(aj) are similarly defined w.r.t. Eqs. (3.1)–(3.6). The bimodal

attention mechanism allows the information from two different modalities to influence each

other.
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3.1.3 Noise Sentinel

Given the features from the self-attention and bimodal attention, a simple strategy is to

directly fuse these features (e.g. via concatenation) for final prediction. Empirically, we

have found that this strategy does not give the best performance. This is possibly due to

the noise in the features. For example, if the audio features are noisy, the visually attended

audio features from the bimodal attention layer are not reliable. In addition, using the noisy

audio to query the visual features would also result in unreliable visual features. Intuitively,

we would like our model to have the capacity to ignore a certain modality when it is noisy.

Inpired by the visual sentinel [44] used in image captioning, we present a novel noise

sentinel mechanism for this purpose.

The noise sentinel is a parameter within the bimodal attention layer. It has the same

channel-dimension as the attended features within the attention layer, and is initialized to

zero. It is then concatenated to each of the self-attended sequences as follows:

[aa
1,a

a
2, . . . ,a

a
N ,na] , (3.11)

[vv
1,v

v
2, . . . ,v

v
N ,nv] , (3.12)

where na and nv represent the noise sentinel parameters. We use the self-attended visual

features vv
i as queries to attend to the sequence in Eq. (3.11). Symmetrically, we use the

the self-attended audio features aa
i to attend to the sequence in Eq. (3.12). Note we do not

use the noise embedding as a query. In what follows, we derive the visually-attended audio

features av
i . The audio-attended visual features va

i can be obtained by following-suit.

Let us denote the key for the audio noise embedding na as knoise, and the unary term for

the noise embedding as mnoise. We define a few more variables for notational convenience.

qi = qv→a(v
v
i ), (3.13)

kj = kv→a(a
a
j ), knoise = kv→a(na), (3.14)

mj = Wm,v→aa
a
j , mnoise = Wm,v→ana, (3.15)

g(aa
j ) = Wg,v→aa

a
j , g(na) = Wg,v→ana. (3.16)
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We are ready to define the attention scores. The attention score from the visual to audio

clips is

ωv→a(v
v
i ,a

a
j ) =

exp(cq⊺
ikj)

exp(cq⊺
iknoise) +

∑︁N
l=1 exp(cq

⊺
ikl)

+
exp(mj)

exp(mnoise) +
∑︁N

l=1 exp(ml)
; (3.17)

and the attention score between the visual clip and audio noise embedding is

ωv→a(v
v
i ,na) =

exp(cq⊺
iknoise)

exp(cq⊺
iknoise) +

∑︁N
l=1 exp(cq

⊺
ikl)

+
exp(mnoise)

exp(mnoise) +
∑︁N

l=1 exp(ml)
. (3.18)

Concretely, the visually attended audio features with noise sentinel is formulated by

av
i =

N∑︂
j=1

ωv→a(v
v
i ,a

a
j )gv→a(a

a
j ) + aa

i

+ ωv→a(v
v
i ,na)gv→a(na). (3.19)

If the attended modality is noisy, our network can learn to ignore it by attending to the noise

embedding instead. e.g. by setting the attention weight for the noise sentinel ω(vv
i ,na)

much higher than the attention weights on the audio clips, ω(vv
i ,a

a
j ).

3.1.4 Classifier

Let {αk}4k=1 be the set of learned weights with convex sum,
∑︁4

k=1 αk = 1. The final feature

representation for the i-th clip, zi, is then computed as a weighted sum of the unimodal self-

attended and bimodally attended features, zi = α1v
v
i + α2v

a
i + α3a

v
i + α4a

a
i . The final bit

of our framework is a two-layer network that outputs the highlight score of the i-th clip, as

si = σ (f2 (ReLU (f1(zi)))). Here each layer fi(·), with i ∈ {1, 2}, contains layer-norm

[53] and dropout [47] (p = 0.5), which is followed by a linear projection matrix Wi. The

second layer f2(·) specifically projects our features into a scalar, followed by the sigmoid

activation σ(·) to produce the score si, indicating the probability of the i-th clip being a

highlight.

16



Input video

Attention maps with noise sentinel

qu
er

y

key key key keyns ns

Attention map without noise sentinel

qu
er

y
key key key key

self-attended
visual
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Figure 3.4: Attention maps for an example video (top row) without noise sentinel (middle
row) and with noise sentinel (bottom row). ns denotes the attention weights placed on
the noise sentinel (last column of the bimodal attention maps). This surfing video has
noisy audio - the microphone constantly has water splashing against it, or is submerged
in water. Consequently, our model chooses to attend largely to the noise sentinel for the
audio attended visual features and visually attended audio features (bottom row) - since the
audio is unreliable both as a query (there are no audio cues) and as a key (there is nothing
of interest to attend to in the audio).

3.1.5 Model Learning

The highlight detection datasets are highly imbalanced, since the majority of training clips

are not highlights. We address this issue by adopting a weighted binary cross entropy loss,

where a positive example (highlight) carries a higher weight (wp) than a negative example

(non-highlight). Our final training loss becomesL =
∑︁N

i=1−[wpyi log(si)+(1−yi) log(1−

si)], with yi ∈ {0, 1} the ground-truth label of the i-th clip.
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3.2 Experiments

3.2.1 Datasets and Setup

We utilize three datasets, namely the YouTube Highlights dataset [1], TVSum dataset [27],

as well as the Video Titles in the Wild (VTW) dataset [4]. The YouTube Highlights

dataset [1] contains six different categories: dog, gymnastics, parkour, skating, skiing, and

surfing. There are approximately 100 videos for each category. Following the practice of

prior efforts, we train a highlight detector for each category. The TVSum dataset contains

50 videos across ten categories. We follow prior works and train a highlight detector for

each category using a random 80/20 split. The Video Titles in the Wild (VTW) dataset [4]

contains highlight labels, but does not have categorical information. We follow the work

of [4] and adopt their split of 2,000 videos for training, 300 for validation, and 2,000 for

testing.

Features: On the YouTube Highlights and TVSum datasets, we follow the work of [11]

and use a 3D CNN [50] with ResNet-34 [54] backbone pretrained on the Kinetics-400

dataset [55] to obtain the visual frame-level features. Since the 3D CNN performs temporal

convolution over 16 consecutive frames, we consider a 3D feature to be a part of a clip if it

overlaps by at least 50% with the clip.

On the VTW dataset, we follow the original work of [4], and use a C3D network [12]

pretrained on Sports-1M [56] to obtain visual features. Each video is also divided into clips

of 100 frames following the prior work [4].

For all datasets, we use a PANN audio network [49] pretrained on AudioSet [57] to

obtain audio features that align with the visual clips. Frame-level features are average-

pooled within each clip for both audio and visual features to generate a clip-level feature.

Implementation Details: We train our model using Adam [58], with a learning rate of

5 × 10−5. We train for 30 epochs on the YouTube and TVSum datasets, and 5 epochs on

the VTW dataset. Before the attention modules, we project each modality into a vector
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RRAE

(V)

[3]

GIFs

(V)

[2]

LSVM

(V)

[1]

CLA

(V)

[8]

LM

(V)

[8]

MN

(V)

[10]

MN

(AV)

[10]

Trail.

(V)

[11]

SA

(V)

Ours

(AV)

dog 0.49 0.308 0.60 0.502 0.579 0.5368 0.5816 0.633 0.649 0.645 (↓)

gym. 0.35 0.335 0.41 0.217 0.417 0.5281 0.6165 0.825 0.715 0.719 (↑)

park. 0.50 0.540 0.61 0.309 0.670 0.6888 0.7020 0.623 0.766 0.808 (↑)

ska. 0.25 0.554 0.62 0.505 0.578 0.7094 0.7217 0.529 0.606 0.620 (↑)

ski. 0.22 0.328 0.36 0.379 0.486 0.5834 0.5866 0.745 0.712 0.732 (↑)

surf. 0.49 0.541 0.61 0.584 0.651 0.6383 0.6514 0.793 0.782 0.783 (↑)

Avg. 0.383 0.464 0.536 0.416 0.564 0.6138 0.6436 0.691 0.705 0.718 (↑)

Std. ±0.004 ±0.006

Table 3.1: Highlight detection results (mAP) on the YouTube dataset. Our visual only
model, SA (V), outperforms all prior methods, and our full audio-visual model achieves
state-of-the-art performance. Best and second-best results are in bold and with underline,
respectively. (↑)/(↓) indicate an improvement/decline relative to the unimodal visual base-
line, SA (V). We show the modalities used for each method in brackets: (V) for visual, and
(AV) for audio-visual.

of fixed-size length 512. The key, query, and value vectors all follow the same size. The

constant c for all attention modules is set to 0.06. We set the positive class weight wp to 5

for the loss term.

Evaluation Metrics: We adopt the widely-used mean Average Precision or mAP as the

evaluation metric for the YouTube and VTW datasets. On the TVSum dataset, we follow

prior works [8] and adopt the mAP at top-5 metric. Following prior studies [1, 2, 11],

a mAP/maP at top-5 score is separately computed for every video, because a highlighted

moment in one video is not necessarily more interesting than non-highlight moments in

other videos; we report the average mAP over all videos. We repeat each experiment

10 times with different random seeds, and report the average performance and standard

deviation over these 10 trials.
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sLSTM

(V)

[37]

SM

(V)

[35]

SG

(V)

[20]

LM

(V)

[8]

DSN

(V)

[21]

VESD

(V)

[17]

Trail.

(V)

[11]

MN

(AV)

[10]

SA

(V)

Ours

(AV)

VT 0.411 0.415 0.423 0.559 0.373 0.447 0.613 0.8062 0.8337 0.8370 (↑)

VU 0.462 0.467 0.472 0.429 0.441 0.493 0.546 0.6832 0.6469 0.5726 (↓)

GA 0.463 0.469 0.475 0.612 0.428 0.496 0.657 0.7821 0.8444 0.7845 (↓)

MS 0.477 0.478 0.489 0.540 0.436 0.503 0.608 0.8183 0.8651 0.8605 (↓)

PK 0.448 0.445 0.456 0.604 0.411 0.478 0.591 0.7807 0.7032 0.8009 (↑)

PR 0.461 0.458 0.473 0.475 0.417 0.485 0.701 0.6584 0.6749 0.6922 (↑)

FM 0.452 0.451 0.464 0.432 0.412 0.487 0.582 0.578 0.6690 0.7003 (↑)

BK 0.406 0.407 0.417 0.663 0.368 0.441 0.647 0.7502 0.6808 0.7300 (↑)

BT 0.471 0.473 0.483 0.691 0.435 0.492 0.656 0.8019 0.9496 0.9741 (↑)

DS 0.455 0.453 0.466 0.626 0.416 0.488 0.681 0.6551 0.6079 0.6747 (↑)

Avg. 0.451 0.461 0.462 0.563 0.424 0.481 0.628 0.7324 0.7476 0.7627 (↑)

Std. ±0.021 ±0.020

Table 3.2: Highlight detection results (top-5 mAP) on the TVSum dataset. Our visual only
model, SA (V), outperforms all prior methods, and our full audio-visual model achieves
state-of-the-art performance. Best and second-best results are in bold and with underline,
respectively. (↑)/(↓) indicate an improvement/decline relative to the unimodal visual base-
line, SA (V). We show the modalities used for each method in brackets: (V) for visual,
and (AV) for audio-visual. We see an improvement in seven out of ten categories over the
unimodal SA (V) baseline with our full model.

3.2.2 Baselines

We define the following baseline approaches for comparison:

• SA (A) and SA (V): In the unimodal case (audio or visual features only), we use self-

attention to obtain the self-attended features, and use the same classifier architecture

to classify each clip. We dub this model SA (V) for self-attended visual model, and

SA (A) for self-attended audio model. The SA (V) model is directly comparable to

prior works

• SA (AV)early: We try out a self-attention based audio-visual network that concatenates

the audio and visual features in an early-fusion fashion, then does self-attention and
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Method mAP

VTW (V) [4] 0.583

SA (V) 0.722 ± 0.003

Ours (AV) 0.812 ± 0.002

Table 3.3: Highlight detection results (mAP) on the VTW dataset. Our approach outper-
forms baselines, and outperforms the prior state-of-the-art method [4] by 22.9% mAP. We
show the modalities used for each method in brackets: (V) for visual, and (AV) for audio-
visual.

uses the same classifier to classify each clip. We call this network SA (AV)early.

• SA (AV)late: In addition, we try out a self-attention based audio-visual network that

sums the self-attended features from each modality in a late-fusion fashion, then uses

the same classifier to classify each clip. We call this network SA (AV)late.

We also compare with state-of-the-art methods on each dataset. For each method, we

use “(V)” if it only uses the visual signal, and “(AV)” if it is an audio-visual method.

3.2.3 Highlight Detection Results

YouTube Highlights: We show the main results on the YouTube dataset in Table 3.1. We

achieve state-of-the-art performance on the YouTube dataset using our visual only model

SA (V) model, outperforming a prior audio-visual network, MN (AV) [10]. We see a further

gain of 1.3% when we use the proposed architecture. Our final architecture achieves better

performance in five out of six categories, while maintaining reasonably good performance

in the other category, dog.

TVSum: We show the results for the TVSum dataset in Table 3.2. Our visual-only model

SA (V) outperforms the prior audio-visual state-of-the-art, and our audio-visual model im-

proves performance by another 1.5%. We note that we see an improvement over the visual

model in seven out of ten categories.
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Method TVSum YouTube VTW

SA (V) 0.748±0.02 0.705±0.004 0.722±0.003

SA (A) 0.687±0.03 0.670±0.008 0.794±0.002

SA (AV)early 0.750±0.01 0.703±0.004 0.798±0.003

SA (AV)late 0.750±0.02 0.709±0.004 0.805±0.003

Ours (AV) 0.763±0.02 0.718±0.006 0.812±0.002

Table 3.4: Comparison to Baselines: mAP/top-5 mAP with standard deviation on TVSum,
YouTube, and VTW datasets for several baselines and our full model.

VTW: We show the results for the VTW dataset in Table 3.3. Our approach outperforms

the visual only baseline by a large margin. This is due in part to the importance of audio

on this dataset, as shown in Table 3.4, where the audio-only baseline SA (A) outperforms

its visual counterpart by 7.2% mAP. Upon further investigation, we determined that this

is because the dataset contains chiefly user generated videos, where highlight-worthy mo-

ments are typically accompanied by man-made sounds such as cheering and clapping. This

strengthens our belief that audio can be a useful as a stand-alone signal for highlight detec-

tion.

Comparison to Baselines: We compare our full model to the three different baselines

outlined in Sec. 3.2.2. The results are shown in Table. 3.4.

Our visual-only model SA (V) outperforms its audio counterpart SA (A) on the TVSum

and YouTube datasets. On the VTW dataset SA (A) outperforms SA (V) by a large margin.

Qualitative analysis of the VTW dataset determined that the interesting moments in the

dataset were often accompanied by sounds like clapping and cheering.

Even so, our audio-based models SA (A) often perform on-par with visual state-of-the-

art methods. On the TVSum and YouTube datasets, SA (A) outperforms all but the prior

state-of-the-art on the respective dataset. This lends credence to the hypothesis that audio

can be a useful stand-alone signal for highlight detection.

22



Figure 3.5: Qualitative results: Highlight moments are outlined in green, and the output of
our model is plotted along with ground truth highlights below each video. The attention
maps are visualized to the right of each video. The model attends to the noise sentinel ns
for the surfing video (top), while attending to the opposite modality for the skating (bottom)
video. The skating video has audio cues (cheering and skateboard noises) which our model
utilizes.

Our full model outperforms the multimodal early and late fusion baselines for all three

datasets. This shows the effectiveness of our bimodal attention and noise sentinel compo-

nents.

Qualitative Results: We visualize the attention maps produced by our approach in Fig. 3.4.

The self-attention layers produce similar attention maps. However, the attention maps of

the bimodal attention layer exhibit a strong difference with and without the noise sentinel.

With the noise sentinel, our model largely chooses to attend to the noise sentinel for the

bimodally attended features. This particular video contains noisy audio, as the microphone

is often submerged in water. Our approach learns to ignore the interaction between the

modalities as the audio is not useful as a cue (query) nor as complementary information

to the visual features (key, values). We present additional qualitative highlight detection

results along with their attention maps in Fig. 3.5.
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Visual Audio

SA

(V)

Ours

w/o audio

SA

(A)

Ours

w/o visual

YouTube 0.705
0.690

(-1.5%)
0.670

0.649

(-2.1%)

VTW 0.722
0.714

(-0.8%)
0.794

0.793

(-0.1%)

Table 3.5: Missing modality at test time: We compare our unimodal baselines to our audio-
visual model with a missing modality at test time. We see small drops in performance.
Our model w/o audio still outperforms the prior state-of-the-art on VTW by 13.1% [4], and
performs almost as well as the prior state-of-the-art on YouTube [11] (69.0% vs. 69.1%).

3.2.4 Ablation Studies

Missing Modality during Testing: During training, our approach has full access to both

visual and audio modalities. Meanwhile at testing, we may sometimes encounter cases

where only one modality is available. This motivates us to investigate the situation of

missing a modality at test time. Here, the missing modality is simulated by feeding in an

input sequence of all-zeros in place of the missing modality. Table 3.5 shows the results.

On the YouTube dataset, a performance drop is observed relative to the unimodal SA

(V) and SA (A) models of 1.5% and and 2.1%, respectively, which is to be expected. Even

with this performance dip, our approach performs on par with the previous state-of-the-art

on with a visual-only input: we achieve a mAP of 69.0% while the previous state of the

art is 69.1%. We see much smaller drops in performance on the VTW dataset. Using only

visual features at test-time, our performance is 0.8% worse than the SA (V) visual baseline.

When we use audio features only, we note a performance drop of only 0.1%. For the VTW

dataset, we outperform the prior state-of-the-art by 13.1% when we are missing audio,

and by 21% when we are missing visual features. Overall, our audio-visual approach is
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visual feat. YouTube→ VTW VTW→ YouTube

C3D 0.634 0.616

3D ResNet 0.623 0.631

Table 3.6: Cross-dataset testing results: We train on one dataset and test on the other, and
outperform the majority of prior works.

robust to missing modalities. As most videos come with both audio and visual features,

our method is expected to outperform visual-only and audio-only models, even when a

modality is missing in some videos.

Cross-Dataset Testing: In this section, we investigate the transfer performance of our

model across datasets. Since we use different visual features to train our main models for

each dataset (3D ResNet-34 for YouTube, and C3D for VTW), we show two possibilities

for each experiment in Table 3.6. For example, the first row of YouTube→ VTW indicates

that we use C3D visual features to train a model on YouTube, and test on the VTW dataset.

When training on VTW and testing on YouTube, our method outperforms all prior

visual-only methods except for Trailers [11] that are trained and tested on the YouTube

dataset. Our cross-dataset performance from YouTube to VTW shows similar results,

where it outperforms the results reported in [4] on the VTW dataset by 5.1% mAP, us-

ing the same visual features.

Impact of Disentangled Attention: In this experiment, we analyze the impact of disentan-

gled attention compared with classic self-attention, where the attention score is formulated

as ωv→v(vi,vj) = softmax(cq̂v→v(vi)
⊺k̂v→v(vj)) for self-attention and similarly for our

bimodal attention layers. We show the result in Table 3.7. We see that disentangled atten-

tion improves our results for both datasets.

Impact of Noise Sentinel: In this experiment, we study the impact of the noise sentinel

on the overall performance. We show the result in Table 3.8. The result demonstrates that

using the noise sentinel improves the performance on both datasets.
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Attention mechanisms VTW YouTube

Classic self-attention 0.808 0.705

Disentangled attention (ours) 0.812 0.718

Table 3.7: Ablation study on disentangled attention: We achieve the best result with the
disentangled attention.

Noise sentinel VTW YouTube

Without noise sentinel 0.804 0.716

With noise sentinel (ours) 0.812 0.718

Table 3.8: Ablation study on noise sentinel: We achieve superior performance with the
noise sentinel.

3.3 Summary

We proposed an audio-visual framework for video highlight detection. Our architecture

models the relationship between audio and visual information through a bimodal attention

layer to produce fused representations. We also introduced an adaptive noise sentinel mech-

anism that “looks away” from a noisy audio or visual modality. We empirically showed that

our framework achieves superior performance on well-known benchmark datasets. While

we focus on highlight detection, the proposed techniques could benefit other audio-visual

tasks such as audio-visual speech recognition, action localization and video summariza-

tion.
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Chapter 4

Contrastive Learning for Unsupervised
Video Highlight Detection

In this chapter we consider the problem of unsupervised video highlight detection. Existing

efforts in highlight detection are mostly fully-supervised, requiring humans to manually la-

bel the interesting moments in videos. This is a very expensive and time intensive process.

Recent weakly supervised methods [8, 10] alleviate the heavy demand for manual anno-

tations, but nonetheless collect large-scale external to compensate for the lack of ground-

truth annotations. For example, the work of [8] employs 10 million Instagram videos to

train their model.

On the other hand, recent advances in contrastive learning have helped close the gap

between unsupervised models and their supervised counterparts [48, 59]. The goal of con-

trastive learning is to learn an unsupervised representation of some data that is useful for

downstream tasks. For images, the task is usually classification. In the image domain, a

model is trained to map two randomly transformed versions of the same image (e.g. ran-

dom cropping, color distortion), closer together in an embedding space relative to other

images that are also randomly transformed [59]. Thus, we can view contrastive learning as

a clustering task in which the aim is to form a cluster for each image where the samples

within each cluster are randomly transformed versions of the original image.

While visual transformations are straightforward, it is unclear what kinds of transforma-

tions to apply in discrete domains such as language. Textual transformations could include
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Figure 4.1: Highlight clips form better clusters for contrastive learning: we use t-SNE [60]
to visualize a video and its nearest neighbors using non-highlight clips and highlight clips.
Each point represents a clip, and each color represents a video. We see that poor clusters in
the non-highlight clip embedding space are clearer in the highlight clip embedding space.
Thus, our model learns to pick highlight clips to do well on the contrastive learning task.

word deletion, replacement with a synonym, or even applying back-translation to obtain a

different phrase with the same meaning. Recent work [48] has found that dropout [47] can

be used as a random transformation to learn superior unsupervised sentence embeddings

through contrastive learning.

Inspired by this idea, we propose our own attention-based network that directly picks

clips in order to produce a video embedding. We apply dropout within the network as our

transformation, and learn to map two embeddings of the same video with a different series

of dropouts closer than to embeddings of other videos.

While the end-goal in the aforementioned works in contrastive learning is to produce

a representation of the entire image or a sentence, we are much more interested in which

parts of the video our model picks to produce this representation. Each video contains

highlight and non-highlight clips. We posit that highlight clips contain more information

about each video and thus our model learns to pick highlight moments to perform well on
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the contrastive learning task.

Let us motivate this claim through the example in Fig. 4.1. As previously stated, we are

essentially learning to cluster a video close to itself under random dropout perturbations.

We claim that highlight clips contain more information about the video itself, and thus we

form better clusters if our model picks highlight clips to produce a video embedding. In

this figure, we show the same set of videos represented by non-highlight clips (left) and

highlight clips (right) using t-SNE [60]. Each video is shown using a different color, and

each point represents a clip. The non-highlight clips do not form good clusters: the clusters

often overlap, and each cluster is also not compact. On the other hand, we can clearly

differentiate between the different videos when using highlight clips. This means that in

order to do well on the contrastive learning task, our model will learn to pick highlight

clips. We also empirically investigate the quality of the clusters in Section 4.2.3.

We empirically evaluate our model on three widely-used highlight detection bench-

marks, and demonstrate the superior performance of our approach. We significantly out-

perform the state-of-the-art methods.

4.1 Approach

As illustrated in Fig. 4.2, our approach is based on contrastive learning. In the contrastive

learning task, we learn to map a transformed version of a sample close to itself relative

to other samples in an embedding space. In order to do this, we use different dropout

masks within our network to produce a transformed version of each video. Our method

then generates an attention score for each clip to compute a weighted sum of the clips.

This weighted sum is used to represent the entire video for contrastive learning. Our key

hypothesis is that our network will learn to pick highlight clips in order to solve the task.

In Fig. 4.3, we show our model inference at test time for highlight detection. We use the

attention scores from the clip selector directly as our highlight scores.
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sum
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Attract
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Repel
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mask

dropout
mask

dropout
mask

Feature ExtractorFeature Extractor Feature Extractor

Clip Selector Clip Selector

sum sum

anchor video embedding negative video embedding

Anchor and positive video Negative video

Figure 4.2: Contrastive Learning Framework for training: we use a video encoder model
to embed an input video. We obtain two different embeddings hm and hm′

of a video
by using different dropout masks m and m′, respectively. These two embeddings will
serve as the positive video embedding, and an anchor video embedding. We also obtain a
negative video embedding hm′′

by using a different video as a negative video. Our objective
is to increase the similarity between the anchor embedding hm and positive embedding
hm′

while decreasing the similarity between the anchor embedding hm and the negative
embedding hm′′

. In practice, we do this using the contrastive loss defined in Eq. 4.14,
which uses multiple negative video embeddings in a batch. In this framework, we can see
that the clip selector learns to pick the most informative clips in the video.

4.1.1 Generic Attention Layer

We define a generic attention layer to simplify notation. The generic attention layer is a

modified version of the scaled dot product attention of [51] as illustrated in Fig. 4.4. Con-

sider two sequences of d-dimensional vectors X = {x1, . . . ,xK} and Y = {y1, . . . ,yL},

where xi ∈ Rd (i = 1, 2, ..., K) and yj ∈ Rd (j = 1, 2, ..., L). We define an attention

layer that queries Y using X . The attention layer returns an intermediate attention map

α ∈ RK×L that captures the degree of dependence between xi and yj , and computes the

attended features Z = {z1, . . . zK}. We define the following general form for notational
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Video Encoder

Feature Extractor

Clip Selector

Video

output: attention scores over clips

Figure 4.3: Model inference at test time: we don’t make use of the embeddings and simply
use the attention scores over the clips produced by our clip selector as our output highlight
scores.

convenience:

α,Z = Attn(X,Y ). (4.1)

The details of Eq. (4.1) are as follows. First, we define the query, key, and value linear

transformations:

qi = W qxi, kj = W kyj, vj = W vyj, (4.2)

where W q ∈ Rd×d,W k ∈ Rd×d,W v ∈ Rd×d are model parameters of the linear transfor-

mations. We formulate the attention map α using the dot product between the query and

key, and normalize over the keys (j) using the softmax function.

αij = softmax(qi · kj). (4.3)

We define zi as a weighted sum of the values vj:

zi =
N∑︂
j=1

αijvj. (4.4)

We also include a residual connection, followed by layer normalization [53], that is:
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Figure 4.4: Generic Attention Layer: our generic attention layer takes in a query sequence
xi, i = 1, ..., K, and a key/value sequence yj, j = 1, ..., L. It then produces an attended
feature zi for each query xi. We apply dropout to both input sequences, and apply dropout
after computing the attention between the two sequences. This is then followed by a resid-
ual connection and a layer normalization layer. Finally, we have a feed-forward layer with a
residual connection, before applying another layer normalization layer at the end. Residual
connections are used only when L = K.

zi ← LN(zi + yi), (4.5)

where LN() indicates layer normalization.

After this, we feed the output to a feed-forward network that also includes a residual

connection and layer normalization. The feed-forward network is simply two linear layers

with a ReLU non-linearity in between. Thus our final attended features are:

zi ← LN(zi + FF(zi)), (4.6)

where FF(zi) = max(0, ziW 1 + b1)W 2 + b2 and W 1,W 2 ∈ Rd×d, b1, b2 ∈ Rd are the

weights and biases, respectively, of the feed-forward network.

The attention layer allows us to capture the interaction between the two sequences. If our

query and key sequences have differing lengths (i.e. K ̸= L) we are unable to use Eq. 4.5,

and simply remove the residual connection and perform layer normalization directly on zi.
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attention map / clip
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key, value

query

Attention:

Clip Selector

average pool

dropout mask dropout mask

Figure 4.5: Video Encoder Architecture: We break a video into clips of some fixed number
of frames (e.g.100 frames) and obtain N clips. For each clip j we obtain features from a
pre-trained feature extractor to get vj . Then we use our feature extractor attention layer
to obtain higher level self-attended features. We then average the self-attended features to
obtain one query v̄, and produce a weighted sum of the self-attended features using our
clip selector attention layer. In each attention layer, we apply a dropout mask m. While
this dropout mask is not the same for each attention layer, we simply use m to denote the
entire sequence of dropouts applied in a forward pass for one video. The final output is the
set of attention scores αj which serve as our highlight scores sj for each clip, and a video
embedding hm which we use for the contrastive learning task.

4.1.2 Video Encoder

We split a video into N fixed-length clips. The content of the clips is then represented using

N vectors of dimension dv, V = {v1, . . . ,vN}. Here vi ∈ Rdv and dv is the dimension

of the clip feature. These features are extracted using pre-trained visual feature extractors.

Our goal is then to produce highlight scores S = {s1, . . . , sN} for each clip in the video.

Feature Extractor: In video highlight detection, it is important to capture the relationship

between different clips in a video, as it is difficult to reason whether a clip is a highlight

without any context. In order to capture this relationship, we use an attention layer. First,

the video features vi ∈ Rdv are projected to a fixed embedding of size d,

zv
i = W Vvi, (4.7)

where W V ∈ Rd×dv . We use Zv to denote the set of features of a video, i.e.

Zv = {zv
1, z

v
2, ...,z

v
N}. (4.8)

Then we perform self-attention to update the features:
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Zv ← Attnf (Z
v,Zv). (4.9)

Note that the self-attention is a specific case of our generic attention layer from

Sec. 4.1.1, where the sequences X and Y are identical.

Clip Selector: The clip selector picks important clips within the video using a soft-

mechanism. While there are many choices for how to define this, we simply use another

attention layer. Simply put, we define the query as the average of the features obtained from

the feature extractor, and attend to the features Zv. This will return a single embedding at

the output of our attention layer since the number of queries K is 1:

v̄ =
1

N

N∑︂
i=1

zv
i , (4.10)

α, {h} = Attncs({v̄},Zv). (4.11)

This gives us our final video embedding h ∈ Rd, and the attention scores α that denote

the contribution of each clip to the video embedding. Through this mechanism, our model

learns to pick highlight clips in order to distinguish the video from other videos within the

dataset. We denote our video encoder as h = F (V ), and use the attention score αj directly

as our highlight score sj for clip j.

4.1.3 Contrastive Learning

We illustrate the contrastive learning framework in Fig. 4.2. In the contrastive learning task,

we learn to map a transformed version of a sample close to itself relative to other samples in

an embedding space. In the case of images, it is easy to think of different transformations.

Common transformations include random cropping, random flips, and color distortions.

However, such data transformations are difficult to apply to discrete modalities such as

language [48], and in our case, vector representations of video clips obtained from a pre-
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trained feature extractor. To combat this issue, we adopt the SimCSE framework for our

task and use dropout as our transformation [48].

Dropout: Dropout was first introduced in the work of [47] to prevent neural networks

from overfitting. In dropout, an activation inside the neural network is randomly set to

zero with some probability p. Following SimCSE [48], we opt instead to use dropout as a

transformation: given two different dropout masks within our network, we will obtain two

different video embeddings. This is the analog to images, where we obtain two different

embeddings for an image if apply different transformations (e.g. random crop, random flip)

to the image before we feed it into the network.

In our model, we apply dropout in two places for each attention layer: first, we apply

dropout to the features before we have computed the dot product attention. That is,

xi ← Dropout(xi), yi ← Dropout(yi). (4.12)

In addition, we apply dropout to the output of the dot-product attention before layer

normalization and the residual connection. Thus Eq. 4.5 becomes:

zi ← LN(Dropout(zi) + yi). (4.13)

We use m to denote the entire sequence of dropout masks applied within the network for

an input video. Given this mask, we denote the embedding produced by our video encoder

as hm = F (V ,m).

Contrastive Loss: We adopt the common softmax formulation of the contrastive loss [48,

59]. For a video l, we apply two different dropout masks m and m′ to produce the anchor

video embedding hm
l = F (V l,m) and positive video embedding hm′

l = F (V l,m
′), re-

spectively. We randomly sample other videos in the dataset k to form the negative video

embeddings hm′
k

k . Our task is then to increase the similarity between the anchor and posi-

tive embeddings and decrease the similarity between the anchor and negative embeddings.

Concretely, we formulate the loss for video l as follows:
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Ll = − log
exp(sim(hml

l ,h
m′

l
l )/τ)∑︁B

k=1 exp(sim(hml
l ,h

m′
k

k )/τ)
. (4.14)

Here, B denotes the batch size, τ is a temperature parameter, and sim(h1,h2) denotes

the cosine similarity h⊺
1h2

||h1||·||h2|| . This loss is averaged over an entire batch.

4.2 Experiments

4.2.1 Datasets and Setup

We empirically evaluate our model on three benchmark datasets, namely the YouTube

Highlights dataset [1], TVSum dataset [27], as well as the Video Titles in the Wild (VTW)

dataset [4]. The YouTube Highlights dataset [1] contains videos of six different categories:

dog, gymnastics, parkour, skating, skiing, and surfing. For each category, there are ap-

proximately 100 videos. We pool all the videos together, and train a general model for

all categories. The TVSum dataset contains 50 videos across ten categories. Just like the

YouTube dataset, we pool all the videos together and train a general model for all cate-

gories. Following prior works, we use 80% of the dataset for training, and 20% for testing

[19, 21]. The Video Titles in the Wild (VTW) dataset [4] is a general dataset containing

unedited videos captured using mobile devices. The videos are not constrained to specific

categories, so that this dataset can be considered “in-the-wild”. We follow the work of [4]

and adopt their split of 2,000 videos for training, and 2,000 for testing.

Features: On the YouTube Highlights and TVSum dataset, we follow prior works [8,

11] and use a 3D CNN [50] with ResNet-34 [54] backbone pretrained on the Kinetics-400

dataset [55] to obtain the visual frame-level features. Since the 3D CNN performs temporal

convolutions over 16 consecutive frames, we consider a 3D feature to be a part of a clip if

it overlaps by at least 50% with the clip.

On the VTW dataset, we follow the original work of [4] and use a C3D network [12]

pretrained on the Sports-1M [56] dataset to obtain visual features. Each video is also

divided into clips of 100 frames following the original work [4].
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Method
RRAE

[3]

LM-A

[8]

LM-S

[8]

MN

[10]
Ours

External data ✓ ✓ ✓ ✓ ✗

dog 0.49 0.519 0.579 0.5368 0.6057

gym. 0.35 0.435 0.417 0.5281 0.7109

park. 0.50 0.650 0.670 0.6888 0.7422

ska. 0.25 0.484 0.578 0.7094 0.4976

ski. 0.22 0.410 0.486 0.5834 0.6820

surf. 0.49 0.531 0.651 0.6383 0.6852

Avg. 0.383 0.505 0.564 0.6138 0.6539

Table 4.1: Comparison to unsupervised and weakly supervised methods on the YouTube
dataset (mAP): our model outperforms all prior methods by a large margin. To our knowl-
edge, no prior unsupervised or weakly supervised work exists that dose not make use of
external data on the YouTube dataset.

Implementation Details: We train our model using the Adam optimizer [58] with a learn-

ing rate of 1e-5 for 10 epochs on each dataset. We simply evaluate the model at the last

epoch for the given dataset. We set our contrastive batch size to 32 videos. Before the

attention modules, we set the embedding size d to 512. The key, query, and value vectors

all follow the same size. We set the temperature τ to 0.1, and our dropout rate p to 0.1 for

all datasets.

Evaluation Metrics: We use mean Average Precision (mAP) to evaluate our model. Fol-

lowing prior studies [1, 2, 11], we compute the mean Average Precision separately for

every video, because a highlight in one video is not necessarily more interesting than non-

highlights in other videos; we report the average mAP over all videos.

Comparison Methods: We compare our method to several state-of-the art methods on the

YouTube dataset: RRAE [3], GIFs [2], LSVM [1], LM-A, LM-S [8], MN [10], Trailers

[11], and Attn [61]. Prior weakly supervised methods, RRAE, LM-A, LM-S, and MN rely
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Method
MBF

[18]

CVS

[19]

SG

[20]

DSN

[21]
Ours

External data ✗ ✗ ✗ ✗ ✗

mAP 0.345 0.372 0.462 0.424 0.5276

Table 4.2: Comparison to unsupervised and weakly supervised methods on TVSum dataset
(mAP at top-5) that don’t use external data. Our model achieves the best performance by a
large margin.

Method VTW [4] Attn. [61] Ours

Supervised ✓ ✓ ✗

mAP 0.583 0.722 0.6090

Table 4.3: Highlight detection results (mAP) on the VTW dataset: We achieve reasonable
performance compared to a fully supervised state-of-the-art network, and outperform one
prior supervised work.

on the collection of large external datasets, while our model is trained on the YouTube

dataset itself.

On the TVSum dataset, we compare our method to prior unsupervised and weakly su-

pervised methods: MBF [18], CVS [19], SG [20], VESD [17], LM-S [8], MN [10], LM-A

[8], and DSN [21]. Of these works VESD, LM-A, LM-S, and MN make use of external

data.

While we have fewer baselines on the VTW dataset, we compare our unsupervised

model to prior supervised works [4, 61], and show competitive performance.

4.2.2 Unsupervised Highlight Detection

YouTube: We compare our model to other unsupervised and weakly supervised methods in

Table 4.1. We outperform the prior state-of-the-art in weakly supervised highlight detection

by 4%. Our performance is especially notable since we do not use any external data,

unlike the compared works which all collect large amounts of external data to train their
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Method
VESD

[17]

LM-A

[8]

LM-S

[8]

MN

[10]
Ours

External data ✓ ✓ ✓ ✓ ✗

mAP 0.423 0.524 0.563 0.6979 0.5276

Table 4.4: Comparison to unsupervised and weakly supervised methods on TVSum dataset
(mAP at top-5) that use external data. Even without external data our model outperforms
two of methods.

algorithms. To our knowledge no prior weakly or unsupervised work exists that does not

collect external data to train their model on the YouTube dataset.

We compare our model to prior supervised methods in Table 4.5. We outperform two

prior supervised works, and achieve a performance only 5.1% below the supervised state-

of-the-art, Attn [61]. This proves the efficacy of our model.

TVSum: We compare our model to other unsupervised and weakly supervised models on

the TVSum dataset that don’t use external data in Table 4.2. Our model outperforms the

state-of-the-art significantly by 6.5%.

We also compare our method to models that make use of external data in Table 4.4.

Our model achieves competitive performance. In particular, we outperform VESD and

LM-A, and achieve a surprisingly competitive performance to LM-S. LM-A and LM-S are

trained on 10 million Instagram videos, and LM-S is the category-specific version of LM-

A. Our model also achieves competitive performance to LM-A and LM-S despite not using

external data. The TVSum dataset itself is quite small, with only fifty videos in total for

training and testing, so the gap in performance is to be expected.

VTW: We present our unsupervised learning results for VTW in Table 4.3. Note that

even though our model is unsupervised and does not require ground-truth highlights on

training videos, it performs better than a prior supervised work VTW [37], while main-

taining reasonable performance relative to the supervised state-of-the-art, Attn [61]. We

outperform the prior supervised work by 2.6%, and underperform relative to the super-
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Method
GIFs

[2]

LSVM

[1]

Trail.

[11]

Attn.

[61]
Ours

Supervised ✓ ✓ ✓ ✓ ✗

dog 0.308 0.60 0.633 0.649 0.6057

gym. 0.335 0.41 0.825 0.715 0.7109

park. 0.540 0.61 0.623 0.766 0.7422

ska. 0.554 0.62 0.529 0.606 0.4976

ski. 0.328 0.36 0.745 0.712 0.6820

surf. 0.541 0.61 0.793 0.782 0.6852

Avg. 0.464 0.536 0.691 0.705 0.6539

Table 4.5: Comparison to supervised methods on the YouTube dataset (mAP): Our model
underperforms the supervised state-of-the-art, Attn [61], by only 5% mAP. Their work uses
full supervision and they also train a separate model for each category.

vised state-of-the-art by 11.3%. This is quite a strong performance from a model trained

only to distinguish between videos by directly picking clips.

VTW is an interesting dataset since it contains unedited “in-the-wild” videos that are

captured through personal recording devices such as camcorders and smartphones. Our

model works well on this highly unconstrained dataset, demonstrating the generalization

ability of our model to “in-the-wild” videos.

4.2.3 Why Does It Work?

In essence, we learn to cluster a video embedding close to itself under small dropout per-

turbations. If our model learns to pick non-highlight moments, we posit that the quality of

the clusters will be worse, and thus our performance on the contrastive learning task is also

worse.

To see why this is the case, let us assume that we have a hypothetical model that always

picks non-highlight clips, and another hypothetical model that always picks highlight clips.
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YouTube TVSum VTW

Highlight clips ✗ ✓ ✗ ✓ ✗ ✓

Intra-cluster distance (↓) 0.0954 0.0888 0.1297 0.1225 0.1010 0.0901

Inter-cluster distance (↑) 0.2325 0.2597 0.0905 0.0981 0.8241 0.8284

Table 4.6: Non-highlight clips form poorer clusters: a model that learns to pick highlight
clips achieves better clustering than a model that learns to pick non-highlight clips. High-
light clips form compact clusters (small intra-cluster distance) that are farther away from
other clusters (large inter-cluster distance). (↓) indicates smaller is better, while (↑) indi-
cates bigger is better.

Let us assume that each model picks a clip from the output of our feature extractor exactly

(the attention map α of the clip selector is 1 at some index i and 0 everywhere else). For this

part, we operate directly on the clip representations at the output of the feature extractor

and do not apply any other transformations.

We sample the same number of non-highlight and highlight clips from each video,

and run each model twenty times with different dropout masks for the chosen non-

highlight/highlight clips. In order to perform well on the contrastive learning task, the

embeddings output by each model should form a cluster for each video that has a small

intra-cluster distance (embeddings belonging to the same video should be close together),

and a large inter-cluster distance (embeddings belonging to different videos should be far

apart).

We use the cosine distance dist(h1,h2) = 1− h1·h2

||h1||·||h2|| as our distance measure. For a

video k we sample N highlight or non-highlight clips to form a video cluster. We define

the centroid as simply the average of all the sampled clip embeddings h̄k = 1
N

∑︁N
i=1 hik.

The intra-cluster distance is then defined as the mean of the cosine distance between the

centroid and the clip embeddings i.e. 1
N

∑︁N
i=1 dist(hik, h̄k). The intra-cluster distance is a

measure of how compact the cluster is. Thus, a smaller number is better.

Now let us define the inter-cluster distance. The inter-cluster distance is a measure of
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Dropout YouTube TVSum VTW

✗ 0.6287 0.4887 0.5606

✓ 0.6539 0.5276 0.6090

Table 4.7: Effect of dropout on performance. We use a dropout rate p of 0.1 for all three
datasets.

how well video clusters are separated from each other, thus a larger number is better. We

define this as the mean distance between the centroid of a video cluster k to the centroid

of other clusters j. Concretely, we can write this out as 1
M

∑︁M
j=1,j ̸=k dist(h̄k, h̄j). M is the

total number of videos. We compute the intra-cluster and inter-cluster statistics for each

video, and report the average of each metric across all videos.

We show our results in Table 4.6. We can see that choosing non-highlight clips leads

to worse clustering in the embedding space. The intra-cluster distance (distance between

embeddings for the same video) is higher for non-highlight clips, and lower for highlight

clips. This means that highlights form a tighter cluster in the embedding space. On the

other hand, the inter-cluster distance is higher when using highlight clips compared when

we use non-highlight clips. Highlights form clusters that are well separated. This is a

desirable property for contrastive learning.

This shows that highlight clips are more informative about the video itself. Thus our

model learns to pick highlight clips in order to perform well on the contrastive learning

task.

4.2.4 Effect of dropout on performance

We investigate the effect of dropout in this section, and show the results in Table. 4.7. We

note that dropout improves our performance by noticeable margins (2-4% mAP). Without

dropout, the contrastive learning task is simpler: the cosine similarity between the anchor

video embedding hm
l and the positive video embedding hm′

l for the dropout masks m and

m′ would simply be 1 because m = m′. However, our model would still have to learn to
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Figure 4.6: Qualitative results: we show some qualitative examples. Ground truth highlight
moments are outlined in green. In the skateboarding video (top), we see two highlights.
While our model chooses to focus mostly on the second highlight, we see that it detects
the first as well. In the second video of somebody crashing while paragliding, our model
correctly identifies the highlight moment.

decrease the similarity between the anchor embedding hm
l and the negative embeddings in

the batch h
m′

k
k . As such, our results are still competitive to prior works for all three datasets.

4.2.5 Qualitative Results

We show qualitative results in Fig. 4.6 and see that our model accurately identifies the

highlight moments. In the first video, a skateboarder does two tricks which are outlined in

green. In the second video, a man who is paragliding skims the water and nearly crashes.

The moment where he skims the water is the highlight moment.
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4.3 Summary

In this chapter, we presented a simple unsupervised method for highlight detection. Our

model works simply by learning to distinguish between a dropout transformed version of

a video from other videos by picking highlight clips within the video. We do not collect

large external data, unlike many prior works in unsupervised and weakly supervised high-

light detection. Empirically, we showed state-of-the-art performance on three benchmark

highlight detection datasets.
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Chapter 5

Conclusion

Video highlight detection aims to find interesting moments in videos. It is an important

task due to the sheer amount of video content being generated online. It has a broad range

of downstream applications including video summarization, recommendation, editing, and

browsing. In this thesis, we have developed two novel methods for video highlight detec-

tion that improve upon the state-of-the-art.

In Chapter 3, we presented a supervised model that makes use of audio for video high-

light detection. Our model captures the interaction between video and audio, and also has

an automatic mechanism for ignoring either modality when it is noisy. Our model achieved

superior results, leading us to conclude that highlight detection benefits from the use of

audio.

In Chapter 4, we proposed an unsupervised method for video highlight detection. Unlike

most existing approaches which depend on manually annotated training data, our method

does not make use of any labels. We also don’t collect external video data for training our

model, unlike many existing weakly supervised and unsupervised methods. We achieved

superior results showing the effectiveness of our unsupervised highlight detection frame-

work.

There are several different avenues of exploration in highlight detection. For example,

since we have shown that audio can be useful for video highlight detection, methods that

perform test-time model adaptation are of interest [62, 63]. The core idea is to adapt the
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weights of the model at test-time to a specific instance to improve the performance on that

instance for our main task. This is often done by updating the weights of the model through

an auxiliary task. In our case, the auxiliary task could be tasks such as audio prediction from

video, or audio-visual alignment. Another interesting direction is to incorporate text as an

input in addition to vision and audio for highlight detection since most videos online come

with titles or a short description of what is happening in the video.

In terms of unsupervised video highlight detection, we can consider methods that bridge

the gap between unsupervised and supervised methods. The goal would be to train on a

large number of videos in an unsupervised manner, then fine-tune on a few labeled samples

to perform on par with supervised networks in video highlight detection. This approach

has attracted a lot of attention in recent years in the image classification literature [46, 59],

so it could be of great interest to apply a similar framework to video understanding tasks.

In terms of the highlight detection task itself, we can consider several different variants:

we could apply highlight detection to 360 degree videos. We can also try applying video

highlight detection directly to compressed videos. While existing works all operate on RGB

frames, most visual features are redundant since there is very little change from one frame

to the next. Existing compression formats such as MPEG-4 rely on this redundancy and

only embed the difference between consecutive frames. Existing work in action recognition

[64] suggests that we can achieve superior performance on video based tasks while also

saving computational time by directly operating on this compressed format.

We hope that the methods presented in our work can inspire future methods in video

based tasks such as video action recognition, action localization, and video summarization.

In this thesis, we have taken another step towards understanding videos the same way we

do as humans.
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